The NASA Earth Surface Mineral Dust Source Investigation (EMIT)
Earth’s Mineral Dust Cycle
EMIT Science Objectives

1) Constrain the sign and magnitude of dust-related RF at regional and global scales.
 EMIT achieves this objective by acquiring, validating and delivering updates of surface mineralogy used to initialize Earth System Models.

2) Predict the increase or decrease of available dust sources under future climate scenarios.
 EMIT achieves this objective by initializing Earth System Model forecast models with the mineralogy of soils exposed within at-risk lands bordering arid dust source regions.

Earth System Models
Today, when using mineral speciation in models:

- The global net TOA DRE is estimated to be -0.23 to +0.35 W/m² due to soil mineralogy uncertainty
- 97% of this range is related to the abundance of iron oxides

Example: Current Mineral Dust Source Information

UN Food and Agriculture Organization (FAO) Soil Map Interpolated/Extrapolated

Current Soil Sample Locations

Challenge: Using FAO soil data sets and “Average” soil properties from ≤5000 soils samples (mostly not in deserts) doesn’t fully capture actual distribution and diversity of the mineral dust source regions.

modified from Journet et al., 2014
EMIT Will Use Imaging Spectroscopy
Dust Minerals have Distinct Spectral Signatures

Visible to Short Wavelength Infrared Spectral Range (VSWIR) [400 to 2500 nm]
The Earth System is Rich with Spectral Signatures

Ecosystems: Diversity of Signatures

Atmosphere: Gases, Aerosols, Clouds

Snow/ice: Grain size, Dust, Albedo and Melt

Aquatic: Benthic Materials

Aquatic: Algal Biomass and Composition

Oil Spill

- Grain size spectral change
- Dust spectral change
- Reflectance
- Spectral Albedo
NASA Imaging Spectroscopy Offers a Tested Approach to Measure Surface Mineralogy

1000s of Parallel Spectrometers

Calibrated Image Cube → Material Map

Detector Array

Spectrometer

Telescope

First Imaging Spectrometer (AIS)
FAO Soil Map Compared to Airborne VSWIR Imaging Spectroscopy at Cuprite, Nevada

Cuprite, Nevada Region

FAO Soil Map

VSWIR Imaging Spectroscopy

AVIRIS Cuprite Image Area
EMIT Data Products and Testing Builds on Decades of Airborne Imaging Spectrometer Measurements

Level 1b Radiance

Level 2a Reflectance

Level 2b Mineralogy

Field Spectroscopy with Laboratory/Analyses

Level 3 Gridded

Level 4 Model Runs
The EMIT Instrument is Well Along in Development
Imaging Spectrometer Alignment

- Review of alignment criteria for each requirement
- Review TVAC1a ARF cold measurement results
 - Assess the opportunity or risk of each adjustment from
 - Optics SME perspective
 - Optomechanical adjustment perspective
 - Project perspective
 - Science perspective
- Review TVAC1a CRF cold measurement results
 - Assess the opportunity or risk of each adjustment from
 - Optics SME perspective
 - Optomechanical adjustment perspective
 - Project perspective
 - Science perspective
- Review TVAC1a Keystone cold measurement results
 - Assess the opportunity or risk of each adjustment from
 - Optics SME perspective
 - Optomechanical adjustment perspective
 - Project perspective
 - Science perspective
- Review TVAC1a Laser centroid cold measurement results
 - Assess the opportunity or risk of each adjustment from
 - Optics SME perspective
 - Optomechanical adjustment perspective
 - Project perspective
 - Science perspective
- Concurrence on path forward
EMIT will Begin Measuring Spectra from the ISS in 2022
Acquisition Analysis and Example Orbit

Science Mask

Cloud Statistics

ISS Orbit

Flight direction (descending node shown for illustration)

Along track margin (~5s)
Observation 1 (10-400s)
Along track margin (~5s)
Observation 2 (10-400s)
Along track margin (~5s)
Observation N (10-400s)
Along track margin (~5s)
EMIT Planned Arid Land Coverage Area
EMIT on the ISS delivers $>10^9$ direct spectroscopic observations of arid land surface
<table>
<thead>
<tr>
<th>Data Product</th>
<th>Description</th>
<th>Initial Availability to NASA DAAC</th>
<th>Median Latency in Product Availability to NASA DAAC after Initial Delivery</th>
<th>NASA DAAC Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>Raw collected telemetry</td>
<td>4 months after IOC</td>
<td>2 months</td>
<td>LP DAAC</td>
</tr>
<tr>
<td>Level 1a</td>
<td>Reconstructed, depacketized, uncompressed data, time referenced, annotated with ancillary information reassembled into scenes.</td>
<td>4 months after IOC</td>
<td>2 months</td>
<td>LP DAAC</td>
</tr>
<tr>
<td>Level 1b</td>
<td>Level 1a data processed to sensor units including geolocation and observation geometry information</td>
<td>4 months after IOC</td>
<td>2 months</td>
<td>LP DAAC</td>
</tr>
<tr>
<td>Level 2a</td>
<td>Surface reflectance derived by screening clouds and correction for atmospheric effects.</td>
<td>8 months after IOC</td>
<td>2 months</td>
<td>LP DAAC</td>
</tr>
<tr>
<td>Level 2b</td>
<td>Mineralogy derived from fitting reflectance spectra, screening for non-mineralogical components.</td>
<td>8 months after IOC</td>
<td>2 months</td>
<td>LP DAAC</td>
</tr>
<tr>
<td>Level 3</td>
<td>Gridded map of mineral composition aggregated from level 2b with uncertainties and quality flags</td>
<td>11 months after IOC</td>
<td>2 months</td>
<td>LP DAAC</td>
</tr>
<tr>
<td>Level 4</td>
<td>Earth System Model runs to address science objectives</td>
<td>16 months after IOC</td>
<td>2 months</td>
<td>LP DAAC</td>
</tr>
</tbody>
</table>
L1B Outputs (Radiance)
L2A Outputs (Reflectance)
L2A Outputs (RGB, orthorectified)
L2B Outputs (orthorectified)

Mosaiced L2b Output Spectral Abundance Estimate

- Hematite: Scaled 0-0.41
- Kaolinite: Scaled 0-0.19
- Montmorillonite: Scaled 0-0.49
Summary: EMIT Science Flow to Objectives

Surface Spectroscopy

Mineral composition for models

Update mineralogy in ESMs

Model Runs

RF Predictions

Objectives

1) Constrain the sign and magnitude of dust-related RF at regional and global scales.

2) Predict the increase or decrease of available dust sources under future climate scenarios.
JPL’s Sustained Commitment to Imaging Spectroscopy

Targeting the most demanding science and applications requirements

Calibrated Image Cube

Material Map

Detector Array

Spectrometer

Telescope

Each imaging spectrometer is different based on requirements and technologies.
Comparing assumptions for dust optical properties in various Goddard-based aerosol retrieval algorithms

Robert Levy (NASA/GSFC)

Goddard’s “Dust” Science Task (STG) leads: Patricia Castellenos, Peter Colarco

Algorithm contacts:
• AERONET: David Giles
• Dark Target: Yaping Zhou
• Deep Blue / SOAR: Jaehwa Lee
• MISR: Ralph Kahn, Olga Kalashnikova
• OMIAERUV: Hiren Jethva
• MAIAC: Yujei Wang
• Dust on Mars: Scott Guzewich
Background (Satellite remote sensing of dust)

- Dust aerosol is quite variable when it comes to vertical loading, size distribution, shape distribution and composition.
- In fact, the definition of ‘dust’ is not fixed, but let’s assume dust means particles lifted from arid land surfaces by wind processes.
- There are many remote sensing techniques, developed and tuned for a diverse set of sensor/platform combinations,
- In general, satellite remote sensing is an under-determined problem – no single measurement is sufficient for determining all properties of the dust.

Remote sensing = Blind Men and Elephant

https://medium.com/betterism/the-blind-men-and-the-elephant-596ec8a72a7d
Background (There are many validated algorithms)

- At NASA Goddard, we run many algorithms developed for many sensor/platform combinations.
- To stay in business, each of us must claim that we get the right answer on average.
- How is this possible?
- Each algorithm makes ‘assumptions’ about the dust properties (size, shape, refractive index).

![Graph showing relationship between MODIS and AERONET data with a thumbs up emoji]

Mathematical equation:
\[N = 85463; \text{ within expected } 68.78\% \]
\[\text{Fit: } Y = 0.9524x + 0.0052 \]
\[R = 0.882; \text{ RMS } = 0.116 \]
Background (Why is this a problem)

- Global and regional models used in AeroCom all make their own assumptions for dust and they are NOT the same as used by retrieval algorithms
- Future remote sensing capabilities (e.g. PACE, AOS) will be joining multiple capabilities into one sensor/platform.
- We run the risk of well-validated assumptions for algorithm/sensor/platform #x being inconsistent for #y.
Dust models

• An **aerosol model** is a set of assumptions about size distribution, shape distribution, and spectral refractive index of a particular “type” of aerosol. Each algorithm has aerosol models which are intended to represent dust.

• How similar / different are the **dust models** in the different algorithms?
 • For example, MODIS wants dust to “fit” into VIS/SWIR space whereas OMI wants to “fit” in UV space.

• For each algorithm, I explored the literature and/or asked the developers for information.

• My goal is to put all parameters of dust models on the same scale.
Motivation

This work was motivated by

• a larger Goddard-funded “Science Task Group” (STG) on dust properties in models versus observations. This Dust STG is led by Patricia Castellanos

• Need for a “unified” algorithm for PACE Ocean Color Imager (OCI) led by Lorraine Remer.

• My own curiosity about dark-target models I had derived 15 years ago.
What did I ask for?

For every algorithm, I asked for properties of:

• Size distribution ($dV/d\ln r$)
 • Whether assumed lognormals or not, and how many modes (1 or 2 or more?)
 • If lognormals,
 • then mean and stddev radius of number or volume for each mode (r_n, r_v, σ)
 • If not lognormals, then other properties of the moments.
 • Is the size distribution “dynamic” (e.g. function of loading or AOD?)

• Shape distribution
 • Spheres? Spheroids? Something else?
 • Many teams have assumed collections of spheroids with aspect ratios – often the Dubovik et al (2006) distribution used for AERONET retrieval

• Refractive indices
 • Complex (real + imaginary) for wavelengths or wavelength bands used in a retrieval
 • Whether “dynamic” (function of AOD)

• Anything else?
 • For example, some teams used scattering codes with limits on size parameter ($x = 2\pi r/\lambda$)
First example: AERONET retrieval

- Let’s look at one case: Capo Verde from March 9, 2006 @ 10:24 UTC (same case as used in J. Lee’s (2017) paper.)

Properties of downloaded AERONET retrieval

<table>
<thead>
<tr>
<th>Size Parameter / Mode</th>
<th>VolConc (C_V)</th>
<th>Reff ($r_{	ext{eff}}$)</th>
<th>VolMeanR (r_v)</th>
<th>StdDev (σ)</th>
<th>Inflection (r_{inf})</th>
<th>Sphere Fraction (f)</th>
<th>Parameter / Wavelength</th>
<th>440</th>
<th>675</th>
<th>870</th>
<th>1020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fine</td>
<td>Coarse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun-mode AOD</td>
<td>2.793</td>
<td>2.748</td>
<td>2.617</td>
<td>2.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refr_Real (n)</td>
<td>1.4749</td>
<td>1.4469</td>
<td>1.4379</td>
<td>1.419</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refr_Img (k)</td>
<td>0.00377</td>
<td>0.00055</td>
<td>0.00059</td>
<td>0.0005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extinction (k_{ext})</td>
<td>2.826</td>
<td>2.766</td>
<td>2.628</td>
<td>2.512</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA (w_0)</td>
<td>0.913</td>
<td>0.989</td>
<td>0.990</td>
<td>0.993</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymmetry (g)</td>
<td>0.819</td>
<td>0.773</td>
<td>0.761</td>
<td>0.765</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lidar Ratio (k)</td>
<td>70.025</td>
<td>54.469</td>
<td>55.045</td>
<td>60.559</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lidar Depol (d)</td>
<td>0.296</td>
<td>0.314</td>
<td>0.323</td>
<td>0.332</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extinct. FMF (h)</td>
<td>0.274</td>
<td>0.171</td>
<td>0.112</td>
<td>0.079</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thank you Dave Giles for making sure I understood this.
AERONET “re-retrieval” (1)

- Assume distribution of spheroid aspect ratios “oleg 25” which is same as used by AERONET inversion (Dubovik et al., 2006). Used for current (V3) of AERONET inversions.

- Note there are no spheres \(f(\varepsilon = 1) = 0.0 \).
AERONET “re-retrieval” (2)

Use Dubovik, Sinyuk, Lapyonik (DSL) Code used for AERONET and GRASP

<table>
<thead>
<tr>
<th>Size Parameter / Mode</th>
<th>Fine</th>
<th>Coarse</th>
</tr>
</thead>
<tbody>
<tr>
<td>VolConc (C_v)</td>
<td>0.094</td>
<td>1.593</td>
</tr>
<tr>
<td>Reff (r_{eff})</td>
<td>0.248</td>
<td>1.551</td>
</tr>
<tr>
<td>VolMeanR (r_v)</td>
<td>0.291</td>
<td>1.797</td>
</tr>
<tr>
<td>StdDev (s)</td>
<td>0.481</td>
<td>0.534</td>
</tr>
<tr>
<td>Inflection (r_{inf})</td>
<td>0.439</td>
<td></td>
</tr>
<tr>
<td>Sphere Fraction (f)</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter / Wavelength</th>
<th>440</th>
<th>675</th>
<th>870</th>
<th>1020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun-mode AOD</td>
<td>2.793</td>
<td>2.748</td>
<td>2.617</td>
<td>2.500</td>
</tr>
<tr>
<td>Refr_Real (n)</td>
<td>1.4749</td>
<td>1.4469</td>
<td>1.4379</td>
<td>1.419</td>
</tr>
<tr>
<td>Refr_Img (k)</td>
<td>0.00377</td>
<td>0.00055</td>
<td>0.00059</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

Note presence of “medium mode” (Yes, Ralph, the medium mode is here)
AERONET “re-retrieval” (results 1)

- Used AE fitting to derive AOD at 0.55 µm.
- The point is that spectral dependence of AOD (Angstrom Exponent) is different!
- Note that using original size distribution in fact gives much closer results to original retrieval (and sun AOD) than lognormals.

![AOD normalized to 0.55 µm](chart)

- Retrieved AOD using size distribution
- Retrieved AOD using fine/coarse lognormals
AERONET “re-retrieval” (results 2)

- In addition to AOD dependence, we can calculate all other parameters derived by AERONET for these conditions.
- In turns out that except for AOD spectral dependence, most other parameters compare pretty well.
Fine Mode Fraction

- If we assume the bi-lognormal model
- **Dust is “coarse dominated”**
- We calculate the “Fine Mode Fraction” (η) in terms of AOD
- FMF (η) ~ 0.2 at 0.55 μm for the dust
- FMF shown for AOD=1.0
- Note that FMF is undefined for the retrieved size
Fraction AOD for PM2.5.

- FMF is fraction of Mode A vs Mode B, assuming that Mode A is ‘smaller’ than Mode B.
- As we know, there are often **multiple modes, leaving FMF undefined.**

Let’s use the scattering code to quantify the fraction of the extinction (and thus AOD) that would be arising from particles with D<2.5 µm, or r<1.25 µm (**mask out r>1.25**).

![CapoVerde: size distribution, for AOD = 1p00](image)

![CapoVerde: FractionAOD_PM25 AOD = 1p00](image)
Dust models from satellite algorithms

• Yes, of course, there is a variety of dusts around the world, and even a variety of dust retrieved at Capo Verde.

• **How do our assumptions in retrievals compare with this dust case and each other?**

• Wherever possible I take what folks give me and run DSL code

• In all cases, I am calculating for a ‘fixed AOD’ at a ‘reference wavelength’.

• I went down many rabbit holes, especially in making sure I understood stuff I thought I had understood 20 years ago.

• Relationships between \(r_g \) and \(r_v \), extinction efficiencies and coefficients, normalizations for size distributions, etc.
MODIS & VIIRS algorithms

• Since AERONET retrieves at 440, 675, 870, and 1020 nm, all satellite algorithms have assumed that properties can be interpolated to relevant wavelengths.

• Some algorithms use some bands, others use others.

• Reference wavelength for Dark Target and Deep Blue is Green for MAIAC it is Blue.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>MODIS Satellite(s)</th>
<th>MODIS Band</th>
<th>MODIS Wave</th>
<th>VIIRS Satellite(s)</th>
<th>VIIRS Band</th>
<th>VIIRS Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep Blue</td>
<td>B8</td>
<td>0.41</td>
<td>M1</td>
<td>0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark Blue</td>
<td>B9</td>
<td>0.44</td>
<td>M2</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td>B3</td>
<td>0.47</td>
<td>M3</td>
<td>0.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>B4</td>
<td>0.55</td>
<td>M4</td>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>B1</td>
<td>0.65</td>
<td>M5</td>
<td>0.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIR</td>
<td>B2</td>
<td>0.86</td>
<td>M6</td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWIR1</td>
<td>B5</td>
<td>1.24</td>
<td>M8</td>
<td>1.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWIR2</td>
<td>B6</td>
<td>1.63</td>
<td>M10</td>
<td>1.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWIR3</td>
<td>B7</td>
<td>2.11</td>
<td>M11</td>
<td>2.26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dark Target Ocean (Assumptions)

- Spherical
- Bi-lognormal
 - Choice 4 fine Fx modes
 - Choice 5 coarse Cy modes
- Fixed (non-dynamic) refractive indices and size distributions for each model
- **In theory, coarse modes C8 and C9 are representative of “dust”**
- During retrieval, Fx and Cy are mixed. So we might expect solution that includes C8 or C9.
Dark Target Ocean (Results)

• However, although C8 and C9 are ‘coarse’ the retrieval doesn’t pick them (probably because they are spherical)

• Instead chooses combo of F4 and C6 with AOD fraction of 0.15 or 0.30

• Yaping Zhou et al., have developed model “M10” that is similar to C8 but uses Oleg25 spheroids
Dark Target Land (Assumptions)

- Multi-lognormal
- Urban, Generic, and Smoke models are:
 - Are bi-lognormal and fine-dominated.
 - Spherical
- Dust model
 - is bi-lognormal and coarse-dominated
 - Non-spherical (uses spheroid aspect ratios)
- Dynamic (function of AOD) refractive indices and size distributions for each model. Plotted for AOD = 1.0, and other values of AOD.
DT Land: Results (1)

• **Dust Model:**
 Note that calculated properties vary by index AOD.

 AOD = 1.0
DT Land: Fine Mode Fraction

- Remember that size distribution for all DT-Land models are already ‘bi-lognormal’.

- **Dust is “coarse dominated”**

- We can calculate the “Fine Mode Fraction” (\(\eta \)) in terms of AOD?

- FMF (\(\eta \)) ~ 0.3-0.4 at 0.55 µm for the dust

- FMF shown for AOD=1.0
Fraction AOD for PM2.5.

- FMF is fraction of Mode A vs Mode B, assuming that Mode A is ‘smaller’ than Mode B.
- As we know, there are often multiple modes, leaving FMF undefined.

Let’s use the scattering code to quantify the fraction of the extinction (and thus AOD) that would be arising from particles with D<2.5 µm, or r<1.25 µm (mask out r>1.25).
OMI AERUVV: (2 modes, spheroids)

<table>
<thead>
<tr>
<th>Aerosol Type</th>
<th>Fine</th>
<th>Coarse</th>
<th>Fine</th>
<th>Coarse</th>
<th>Fine</th>
<th>Coarse</th>
<th>Fine</th>
<th>Coarse</th>
<th>Fine</th>
<th>Coarse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min Radius [µm]</td>
<td>0.00627</td>
<td>0.06298</td>
<td>0.43125</td>
<td>7.12764</td>
<td>0.052</td>
<td>0.67</td>
<td>1.697</td>
<td>1.806</td>
<td>13.531</td>
<td>0.0588</td>
</tr>
<tr>
<td>Max Radius [µm]</td>
<td>0.00627</td>
<td>0.06298</td>
<td>0.43125</td>
<td>7.12764</td>
<td>0.052</td>
<td>0.67</td>
<td>1.697</td>
<td>1.806</td>
<td>13.531</td>
<td>0.0588</td>
</tr>
<tr>
<td>rg [µm]</td>
<td>0.00627</td>
<td>0.06298</td>
<td>0.43125</td>
<td>7.12764</td>
<td>0.052</td>
<td>0.67</td>
<td>1.697</td>
<td>1.806</td>
<td>13.531</td>
<td>0.0588</td>
</tr>
<tr>
<td>sigma [µm]</td>
<td>0.00627</td>
<td>0.06298</td>
<td>0.43125</td>
<td>7.12764</td>
<td>0.052</td>
<td>0.67</td>
<td>1.697</td>
<td>1.806</td>
<td>13.531</td>
<td>0.0588</td>
</tr>
<tr>
<td>N_{conc} [/cm^2]</td>
<td>0.00627</td>
<td>0.06298</td>
<td>0.43125</td>
<td>7.12764</td>
<td>0.052</td>
<td>0.67</td>
<td>1.697</td>
<td>1.806</td>
<td>13.531</td>
<td>0.0588</td>
</tr>
</tbody>
</table>

Note mode fractions defined by number.

Varieties of imaginary refractive indices leading to variety of SSA

Note shorter wavelengths (in short VIS and near UV).

Note:
- Mineral Dust
- Fine: 0.00627, 0.43125
- Coarse: 0.06298, 7.12764
- Fine: 0.052, 1.697
- Coarse: 0.67, 1.806
- Fine: 13.531
- Coarse: 0.0588
OMI AERUV: testing 3 models (2 modes each)

- OMI (over ocean) assumes a different set of 25 aspect ratios ("omi 25") which includes some spheres

- "truncation" of size distribution makes very little difference for phase function
- But omi 25 vs oleg 25 matters!
Unfortunately, I don’t have time, so let me get to the point (1)

- Every GSFC algorithm has models defined a bit differently
- If possible, I used DSL scattering code to calculate similar outputs
 - Deep Blue / SOAR (for MODIS & VIIRS wavelengths, normalized to $0.551 \, \mu m$)
 - MAIAC: (for MODIS wavelengths, normalized to $0.466 \, \mu m$)
 - MISR standard: (for MISR wavelengths, normalized to $0.558 \, \mu m$)
 - OMIAERUV: (for OMI wavelengths, normalized to $0.500 \, \mu m$)

- I also calculated for a standard “Mars” model
 - Normalized to $0.550 \, \mu m$.
 - This model assumed a ‘modified gaussian’ rather than multi-lognormal.
Unfortunately, I don’t have time, so let me get to the point (2)

• If my calculations using DSL code don’t match what the algorithm team has given me, I used their numbers.
 • For example, for a MISR super coarse mode, DDA calculations were too intensive to simulate particles >15 µm, so lognormal tails were truncated.
 • Also for MISR, one of their medium modes assumes “grains”, which cannot be simulated using DSL code.
 • For Mars Dust, I cannot reproduce T-matrix calculations for “Cylinder” shape.

• Anyway, let’s see what happens.
Size Distribution

Volume required to derive: AOD = 1.0 at reference wavelen

Dark-Target: 0.554 μm
SOAR: 0.551 μm
OMI: 0.500 μm
MAIAC: 0.466 μm
MISR: 0.558 μm.
MarsDust: 0.550 μm

AllModels: size distribution, for AOD = 1.0

Total Volume of particles (area under curve for left plot)

Noting MISR is only algorithm that has choice of “medium” modes
Characteristic radius parameters

Effective Radius

- Number mean radius
- Area mean radius
- Volume mean radius

All Algs Model
Refractive Index

- For some dust models, refractive indices are different for fine and coarse modes. Here we plot extinction weighted refractive indices.
- Some models are dynamic, so plotted are for AOD = 1.0.
Aspect ratios

Different dust models are different shapes

Sphere: Dark-Target ocean (current)
Spheroids:
 - Oleg11: Dark-Target land
 - Oleg25: SOAR, OMI-land, MAIAC, DT M10
 - OMI25: OMI-ocean
MISR Spheroid: Don’t know shape

Other
 - “Grains”: MISR Medium
 - “Cylinders”: MarsDust
Spectral AOD

Dark-Target: Defined at 0.554 µm
SOAR: defined at 0.551 µm
OMI: defined at 0.500 µm
MAIAC: defined at 0.466 µm
MISR: defined at 0.558 µm.
MarsDust: defined at 0.550 µm
Spectral SSA
Asymmetry parameter
Lidar Ratio and Lidar Depolarization Ratio

AllModels : lidar_ratio

AllModels : lidar_depol_ratio
Phase Function and Depolarization

Calculated by:
- **Mie code:** DTOcean
- **DSL code:** Dust_DTLand, Dust_Yaping, OMI, MAIAC*
- **Meng Database:** SOAR
- **MISR team / DDA:** MISR
- **T-Matrix:** MarsDust

Depolfunc = -p12/p11

Note that MISR p12 not supplied
AOD Fine mode fraction and PM25 fraction

Fine mode fraction *undefined* for <2 or >2 modes

- fPM always defined!
- Remember Capo Verde had fPM = 0.7
- But can’t compute from MISR or MarsDust (because I don’t have the code).
Summary (1)

• All of our Goddard retrieval algorithms validate well
 • (and deserve more funding!)

• Yet, our assumptions within algorithms are dependent on the results we are trying to achieve

• This results in different assumptions for common aerosol types including “dust models”.

• My goal was to try and find a way to visualize the differences between the dust models in different algorithms.

• Some questions to ask:
 • How much difference do these models make when it comes to doing aerosol retrieval?
 • How do these assumptions in our retrievals jibe with assumptions made in models?
 • Is there “one” model that is suitable for dust retrieval from all platforms?
Contribution of the world’s main dust source regions to the global cycle of desert dust (with application to regional constraints on dust absorption)

Jasper F. Kok
University of California – Los Angeles (UCLA), jfkok@ucla.edu

Main take-home points:
- More accurate representation of global dust cycle from integrating model ensemble with observational constraints on dust properties and abundance
- Dust origin: 50% North Africa, 40% Asia, 10% other source regions
- Models overestimate African dust and underestimate Asian dust
- North African dust is less absorbing than modeled

Collaborators: Adeyemi Adebiyi, Samuel Albani, Yves Balkanski, Ramiro Checa-Garcia, Mian Chin, Peter Colarco, Douglas Hamilton, Yue Huang, Akinori Ito, Martina Klose, Danny Leung, Longlei Li, Natalie Mahowald, Ron Miller, Vincenzo Obiso, Carlos Pérez García-Pando, Adriana Rocha-Lima, Bjørn Samset, Jessica Wan, Chloe Whicker
Models cannot accurately predict contribution of different source regions

- Dust source region **determines** mineralogy and thus impacts on radiation, clouds, biogeochemistry

- \(~ x10 \) times spread in current models (also see Dongchul’s talk yesterday)

- Better (?) approach: **integrate constraints** on dust properties and regional dust AOD with **model ensemble results**
DustCOMM data set of 3D global dust cycle resolved by source region

Ridley et al. (2016) constraints on dust AOD for 15 regions

Dust AOD produced by unit dust loading from different source regions

Ensemble of simulations of unit loading of each size from each source region

Observational constraints on dust size distribution (D ≤ 20 um) and mass extinction efficiency

Kok et al., ACP (2021a, 2021b)

Kok et al., Nat. Geo. (2017)
DustCOMM data set of 3D global dust cycle resolved by source region

Ridley et al. (2016) constraints on dust AOD for 15 regions

Add up units of dust loading from each source region in a way that minimizes error against dust AOD constraints

3D dust cycle resolved in:
- Time (season)
- Particle size
- Source region
- With realistic uncertainties

Data available at dustcomm.atmos.ucla.edu

Dust AOD produced by unit dust loading from different source regions

Ensemble of simulations of unit loading of each size from each source region

Observational constraints on dust size distribution ($D \leq 20$ um) and mass extinction efficiency

Kok et al., Nat. Geo. (2017)
Integrating observational constraints with model ensemble produces improved representation of global dust cycle

3D dust cycle resolved in:
- Time (season)
- Particle size
- Source region
- With realistic uncertainties

Data available at:
https://dustcomm.atmos.ucla.edu/

Improved agreement against independent data sets

Fractionation of dust loading per source region

Kok et al., ACP (2021a, 2021b)
Models overestimate African dust, underestimate Asian dust

- **Our results:**
 - African dust $\sim 50\%$
 - Asian dust $\sim 40\%$
 - Minor source regions $\sim 10\%$

- **AeroCom and current models:**
 - African dust $\sim 65\%$
 - Asian dust $\sim 30\%$
 - Minor source regions $\sim 5\%$

Kok et al., ACP (2021a, 2021b)
Application of source-resolved dust data set: constrain dust absorption

- Uncertainty in warming from dust absorption dominates uncertainty in dust DRE
 - Do not have good observational constraints on aerosol absorption (dust ~30% of AAOD; Sand ‘21)
 - EMIT mission can partially address this

- Constrain dust absorption over North Africa using
 - DustCOMM size-resolved loading per source region
 - In situ SSA measurements
Using DustCOMM source-resolved constraints to determine absorption by North African dust

Over a dozen *in situ* measurements of dust single scattering albedo

Constraint on *size-resolved loading per source region* from DustCOMM

Obtain the **dust index of refraction per source region** that maximizes agreement with SSA measurements

Constraint on absorption (AAOD) due to North African dust

Kok et al., ACP (2021a, 2021b)
Most global models overestimate absorptivity of North African dust

- **SSA too low** for most models
 - In **AeroCom phase 3** – CAM5-Atras, ECHAM6.3-HAM2.3, ECHAM6.3-SALSA2.0, GEOS-i33p2, GISS-ModelE2, INCA, NorESM2, OsloCTM3 (Sand et al., 2021)
 - In **our ensemble** - CESM, Arpege, IMPACT, GISS ModelE, WRF-Chem, GEOS-Chem

- Dust **imaginary refractive index is ~half** of that used in models
 - **AERONET** also overestimates imaginary refractive index
 - Our estimates are **consistent with recent lab-based measurements** (Di Biagio et al., 2019)
Model overestimation of dust absorption (DAAOD) is reduced by missing coarse dust

- Previous work has shown that models underestimate coarse dust ($D > 5 \text{ um}$) (e.g., Ryder et al., 2019; Adebiyi and Kok, 2020)

- Dust SSA decreases with particle size
 - Model biases partially cancel each other
 - Results in net overestimation of dust absorption (DAAOD) of 'only' $\sim 40\%$

- By itself, would cause underestimate of dust SW cooling
Summary & Conclusions

- New approach: integrating model ensemble with observational constraints on dust properties and abundance

- DustCOMM data set yields:
 - Improved agreement against independent data
 - Dust cycle (emission, loading, deposition, etc) resolved by season, particle size, source region
 - Data freely available from dustcomm.atmos.ucla.edu

- Dust origin:
 - 50% North Africa
 - 40% Asia
 - 10% other source regions

- Models overestimate African dust and underestimate Asian dust
Models overestimate dust absorption compared to in situ measurements

- Due to overestimation of imaginary index of refraction

Causes overestimation of dust AAOD of ~40%

- Fine size bias in models reduces overestimate of absorption

This Study

AeroCom Phase III

<table>
<thead>
<tr>
<th>Avg</th>
<th>This Study</th>
<th>AeroCom Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0093</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0132</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thank you!

Thoughts? Comments? → jfkok@ucla.edu

The presented work was from the following references:

Kok, J. F., et al. (2021), Contribution of the world’s main dust source regions to the global cycle of desert dust, Atmospheric Chemistry and Physics, 21, 8169-93.
Kok, J. F., et al. (2021), Improved representation of the global dust cycle using observational constraints on dust properties and abundance, Atmospheric Chemistry and Physics, 21, 8127-67.
Adebiyi, A. A., Y. Huang, B. H. Samset, and J. F. Kok (in preparation), Climate models and remote-sensing retrievals overestimate the absorption of solar radiation by North African dust

Main take-home points:

- More accurate representation of global dust cycle from integrating model ensemble with observational constraints on dust properties and abundance
- Dust origin: 50% North Africa, 40% Asia, 10% other source regions
- Models overestimate African dust and underestimate Asian dust
- North African dust is less absorbing than modeled
Constraints on atmospheric dust PSD based on dozens of measurements
Dust-dominated AERONET retrievals of dust size distributions underestimate coarse dust.
A Review of the Treatment of Dust Optical Properties in Earth System Modeling

October 12, 2021

Pete Colarco, NASA GSFC/614

with a lot of useful conversations with: Patricia Castellanos, Rob Levy, Ed Nowottnick, Reed Espinosa, Osku Kemppinen, Ralph Kahn, Andy Sayer, Kirk Knobelspiesse, and others…

Special Thank To: Paul Ginoux, Oriol Jorba, Carlos Pérez García-Pando, Sam Rémy, Zak Kipling, Angela Benedetti, Jeff Reid, Peng Xian, Barry Baker, Jeff McQueen, Taichu Tanaka, Ron Miller, Susa Bauer, Melissa Brooks and Rostislav Kouznetsov
Motivation

• Most abundant aerosol species in the atmosphere
• Clearly visible from space
• Important to Earth’s radiative balance
• Important to aerosol-cloud interactions
• Source of nutrients to land and ocean surfaces
• Impacts air quality and visibility
What We Did

• Surveyed a number of global aerosol models that treated dust

• Most of the models were drawn from the ICAP ensemble of near-real time global aerosol forecasting systems

• Asked all for details on how they approach the treatment of microphysics and optics in their models: sub-bin PSD assumptions, refractive indices, specifics of optical property calculations

• All of the models adopted either a bulk or sectional approach to dealing with dust mass and particle size distribution

• Subset of the models provided asked for specific optical quantities from their own calculation: MEE and SSA @ 550 nm
What We Did

• Surveyed a number of global aerosol models that treated dust
• Most of the models were drawn from the **ICAP ensemble** of near-real time global aerosol forecasting systems
• Asked all for details on how they approach the treatment of microphysics and optics in their models: sub-bin PSD assumptions, refractive indices, specifics of optical property calculations
• All of the models adopted either a bulk or sectional approach to dealing with dust mass and particle size distribution
• Subset of the models provided asked for specific optical quantities from their own calculation: MEE and SSA @ 550 nm
What We Did

• Surveyed a number of global aerosol models that treated dust

• Most of the models were drawn from the ICAP ensemble of near-real time global aerosol forecasting systems

• Asked all for details on how they approach the treatment of microphysics and optics in their models: sub-bin PSD assumptions, refractive indices, specifics of optical property calculations

• All of the models adopted either a bulk or sectional approach to dealing with dust mass and particle size distribution

• **Subset of the models** provided asked for specific optical quantities from their own calculation: MEE and SSA @ 550 nm
Model Treatment of Dust Particle Size Distribution

- GEOS/GEFS/AM4, n = 5
- MODELe, n = 5
- IFS, n = 3
- SILAM, n = 4
- MONARCH, n = 8
- MASINGER, n = 10
- UM, n = 2
- NAAPS, n = 1
Calculation of dust optical properties for these models is generally

$$\sum_{\text{nbins}} \int \text{sub-bin distribution} \times f(\text{refractive index, shape})$$

Could be composition dependent, but in practice for these models is not

Mie theory (most), some non-spherical
*GEOS explicitly uses spheroidal shapes in optical property calculations, all others assume spheres
Calculated Dust MEE & SSA (non-spherical)

- Recalculate dust optical properties assuming GEOS framework, testing different refractive indices.
- Low sensitivity in MEE to refractive index choice, expected because n_{real} approximately the same.
- Much greater sensitivity to size-resolved SSA that tracks with n_{imag}.
- Same but now using Mie theory/spherical optics
- MEE is a little smaller for spherical optics as expected
- Some impact also on size-resolved SSA
Previous slides show not much impact of refractive index choice on MEE

Want to explore convolution of reported size bins and per-bin MEE/SSA on integrated quantities

- Impose dust particle size distribution across reported size bins —> i.e., assume we know dust mass and size distribution
- Use provided per-bin MEE/SSA to calculate the total AOD and SSA
- Normalize mass loading so that NAAPS gives AOD = 1
Models are all similar in AOD for Kok 2017 distribution
• All models get ~100% of mass and >96% of surface area

Much larger disparity for OPAC DESE distribution
• NAAPS has ~85% of surface area; others all close to 100%

Residual disparities are down to coarseness of PSD and particular optics
Conclusions

• Surveyed a series of global dust models for how they cope with dust microphysical and optical properties

• Models reported here take a sectional approach, and in general the size range of particles considered is adequate to express the total mass loading and for the most part the optical properties

• Refractive index as used in the models surveyed is not a prime driver of the mass extinction efficiency (MEE) at 550 nm, but does explain diversity in single scattering albedo (SSA)

• For models that report their per-bin MEE and SSA we illustrate with imposed size distributions how the limited number of size bins and the particulars of their optical calculations result in possibly quite large diversity in the AOD, SSA, and effective MEE

• We suggest further work to refine the number and spacing of size bins needed to adequately express the dust mass distribution and hence its optical properties